NENS 230
Assignment #5
Good Coding Practices

Improving an Event-Triggered Average Function

Due: Tuesday, October 27th, 2015

Goals

* Practice reading and understanding code that someone else has written,
including debugging code.

* Practice improving the readability of code using good style.

* Practice improving the efficiency of code by pre-allocating variables and
“vectorizing” mathematical operations.

* Improve the modularity of code by breaking pieces out as separate functions.

Introduction

In this assignment you apply the MATLAB best practices that were covered in
Lecture 5 to improve an almost-working, but very poorly-written, function that
processes data from a neuroscience experiment. You will run the function with the
provided data to see how it works, find and fix the one bug, and then go through the
code and improve its clarity, modularity, and performance.

The goal of this assignment is to practice good coding style, using descriptive names
and comments, and writing code that is reasonably efficient. By seeing the same
function before and after you improve it, you should better appreciate what a
difference these changes make both in clarity and performance. Furthermore, it is
useful to learn how to read through bad code others have written and figure out
how it works; this is unfortunately the situation you might frequently encounter.
Now you can be part of the solution, not the problem or precipitate.

Brief neuroscience background about the data and the program’s goal

In characterizing properties of neurons of sensory systems, a useful concept is that
of the neuron’s response function, which describes what kind of sensory stimuli best
evoke a response in the neuron. In the early visual system, a type of neuron called a
retinal ganglion cells (RGC) will fire action potentials (“spikes”) in response to a
time-varying change in light intensity. The particular time-varying pattern is
important, and the response of a neuron to different time-varying patterns of
stimulus activity is modeled by a response function, also known as a temporal
receptive field. Intuitively, we can think of the response function as the pattern of
light that the cell is best “tuned” for: when time-varying light intensity adheres
closely to this response function, the neuron is most likely to spike. For example, the
“monophasic OFF” RGCs whose response functions are shown in yellow in figure 1
are most likely to spike when the light falling on the photoreceptors that input to



these RGCs becomes briefly darker (~0.15 seconds of negative deflection in the
stimulus).

0.4

- fast ON
= slow ON
- biphasic OFF
monophasic OFF
- medium OFF
~—— slow OFF
unclassified

0.0 S

Spike-Triggered Average (Normalized)

Time before Spike (s)

Figure 1: Response functions of several different retinal cells from the larval tiger salamander were
estimated using an analytical technique called a spike-triggered average (STA). Each cells’ response
functions are colored according to their functional classification based on this STA. In this plot, the
spike occurs at time = 0 s. Adapted from Segev et al., Journal of Neurophysiology, 2006

We can estimate the response function of a neuron using a simple analytical
technique called event-triggered averaging. When applied to such data, this is called
a spike-triggered average (STA). First, data is collected: a stimulus is applied to
the experimental preparation (e.g., a recently dissected retina onto which light is
projected) and the spiking activity of the neuron is recorded. Figure 2 demonstrates
a snippet of such data, which is provided for this assignment. The light intensity
projected onto the retina over the course of the experiment is shown in red, and the
recorded spikes from the cell of interest are shown as black ticks above.

Stimulus and Evoked Spikes

R R T N
2 v Ll
MWWWWWWW i | i f M',LTW\W

Figure 2: Snippet of the data used in this assignment. The light stimulus projected onto the retina is
shown in red. The simultaneously recorded spikes of one retinal ganglion cell are marked with black
ticks.



Spike-Triggered Average Stimulus
(averaged over 1385 spikes)

Average Stimulus Intensity (AU)

-0.2 1 1 1 1 1 1 1 1 1
500 450 400 350 300 250 200 150 100 50 0
7 (ms before spike)

Figure 3: The code you'll improve in the assignment should have a final output that look like this.

To compute the spike-triggered average, we just average what the stimulus was
immediately preceding every spike. Although there is considerable noise and non-
linearity in the system, by averaging over what the stimulus was during the snippets
of time preceding thousands of individual spikes, we get an accurate estimate of the
neuron'’s response function. This is because spikes tend to happen when the
preceding stimulus was somewhat similar to the “optimal” stimulus, i.e. the
response function. It is very unlikely that the exact response function-like stimulus
ever preceded a spike, but this event-triggered average approaches this optimal
stimulus (pretty cool, right?).

It is also important to consider how far before each spike we want to look at when
computing the STA. We refer to the delay between the time of a spike and the
preceding stimulus as tau (t). So t=0 ms is the time of the spike, and T = 10 ms refers
to 10 ms preceding the spike. While it is possible that whether or not a neuron
spikes is dependent on what the stimulus was many seconds beforehand, in the
retina this is not the case. Thus, if we look at the STA more than 300ms before each
spike, the average stimulus tends to approach zero. This is what we expect to see if
the stimulus that far back does not affect the likelihood of a spike: there would be
approximately equal number of spikes with positive and negative stimulus intensity
300+ ms before the spike.

Note that while this example comes from neurophysiology, the idea behind an
event-triggered average is applicable whenever you measure two variables, and you
want to see whether one of the variables (here, the light intensity) has some
characteristic behavior immediately before/after some particular “event” that
occurs in the second variable (here, when spikes happen).



Detailed Instructions

You are going to fix up a buggy and poorly-written function that computes the spike-
triggered average stimulus from data containing the stimulus and the spike times.
The program is supposed to display the STA after averaging over 10 spikes, 500
spikes, and finally after all the available data (this lets you see how averaging more
data improves the estimate of the neuron’s response).

Unzip the Assignment5 file and copy its contents to an Assignment5 directory
within whatever directory you keep work for this class. You are provided the STA-
computing and results plotting function SpikeTriggeredAverageStimulus.mas
well as a “start” script MAKESTA . m that just calls the function with the appropriate
arguments. MAKESTA . m also times how long execution took, which can help you
“benchmark” your progress. The spike time data is contained in the file
RGCspikes.mat, and the stimulus is described in the file VisualStim.mat.

Start by running MAKESTA.m. You'll notice that the code breaks somewhere in
SpikeTriggeredAverageStimulus.m. Your first task is to debug this function.
Hint: You might want to put a breakpoint right before the line generating the error
is executed, so that you can see the values and sizes of variables and make sure it’s
doing what it’s supposed to be doing. A small fix in just this one line will make the
code work correctly.

Once you've identified the bug, run MAKESTA.m again see the spike-triggered
average be computed and displayed. Notice how it takes a long time to run? When
you are finished with the assignment, running MAKESTA.m should give the same
result, but much faster.

You should now edit SpikeTriggeredAverageStimulus.mand also break out oft-
repeated pieces of it into separate functions (contained in separate .m files) called
by SpikeTriggerAverageStimulus.m. Follow the best practices lecture to
improve the following aspects of the code:

1. Add proper documentation, headers, and comments

2. Use sensible argument, variable, and function names.

3. Use good style; make the code neat and readable (e.g., indent if then
statements, add blank lines between sections of code).

4. Simplify the SpikeTriggerAverageStimulus.m function by moving some
of its code into one or more separate functions. If there’s a block of code that
seems to be repeated almost verbatim in several places (hint: the STA is
plotted 3 different times), maybe it should be a separate function?

5. Improve the code’s performance. For example, not constantly displaying text
to the console, preallocation, and vectorization, are the low-hanging fruit.

6. Another hint on how to speed things up: do you need to even look at all the
spikes if there isn't stimulus accompanying some of them? If you just threw



out those without corresponding stimulus, would you need the conditional
check that’s currently in the main loop?

7. The last two input arguments to SpikeTriggeredAverageStimulus.m,
<tau>and <ignoreFirstNms>, should be optional arguments. You can
make up reasonable defaults for them. The idea behind the latter argument is
that sometimes we want to not analyze data from the first few seconds of the
experiment if we believe that the retina is still adapting to being exposed to
light.

8. Ifyou feel ambitious, there is a slight change in the algorithm that can further

speed things up and reduce how much memory is needed. Hint: do you
really need all the intermediate results? Note that this makes only a marginal
performance improvement.

Through optimization you can considerably speed up the execution time of this
program. On a 2013 MacBook Pro 13”, the poorly-written code runs in 46 seconds
using the data and input parameters provided, whereas the improved solution code
runs in <3 seconds.

Note that the plotStimAndSpikes.m function is not part of the intentionally
badly-written code in this assignment. You do not need to improve
plotStimAndSpikes.m. It's just there to help you see what the raw data you're
working with looks like; when you run MAKESTA . m it will plot the stimulus intensity
over time and the recorded spikes for you. You can zoom in using the plot tools to
see what'’s going on. Seeing this raw data should reinforce that that taking an event
triggered averaged over thousands of events has a seemingly magic effect: you can
pull out a meaningful response function of a neuron from a seemingly random
jumble of stimulus and spike times.

Submission

When you are finished, you will submit everything in your Assignment 5 directory.
We will be looking at your improved SpikeTriggeredAverageStimulus.m
function as well as any additional function(s) you wrote that
SpikeTriggeredAverageStimulus.m calls. You should send these files in a single
(zipped) folder attached to your email called hw5_SUID, where SUID is your SUNET
ID (e.g. hw5_sstavisk). Email this zipped folder to nens230@gmail.com with
subject line [assignment 5].

Extra Credit

Whoever writes the SpikeTriggeredAverageStimulus program that executes the
fastest when run on the grader’s machine will win fame, glory, and an LKSC pastry.



